Goal: Develop comparative data that identifies improved water efficiency from conversion of traditional MESA sprinklers to high efficiency irrigation systems that release a reduced volume of water closer to crop level in an effort to reduce water loss from evaporation and wind drift, reduce overall energy requirements, and increase groundwater reliability. The following table presents a 2-year program to develop reference data, install high efficiency sprinklers, and measure subsequent water use.

			2025		2026	
		Spring	Irrigation		Irrigation	
Ranch	Fall 2024	2025	Season	Fall 2025	Season	Comments
Roberti	Existing	Install:	High		High Eff.	Pivot 10
Pivot 2	McCrometer	SM Sensor	Efficiency		Orbitor	Reference
	meter	-	Orbitor			Compare to
						Pivot I3
Roberti	Existing	Existing	MESA	Install:	High Eff.	
Pivot 10	meter	SM Sensor		High Eff.	Orbitor	
				Orbitor		
M.	Install:	Install:	MESA	Install:	LESA/	LESA/LEPA
Goodwin	Flowmeter	SM Sensor		LESA/LEPA	LEPA	system to be
North Pivot	on Pivot					determined
DS Ranch	Install:	Install:	MESA	Install:	LESA/	LESA/LEPA
Davie Styx	Flowmeter	SM Sensor		LESA/LEPA	LEPA	system to be
	on Pivot					determined

Capital Costs-

The capital costs for this project are estimated to be between \$85,000 and \$110,000 depending on the type of high efficiency sprinklers installed at Goodwin and DS Ranches in the Fall of 2025. The estimated capital costs include all necessary material for flow meters, soil moisture sensors, and installed sprinkler packages.

High Efficiency Spray Head Requirements, including at least:

- Up to a 30-foot wetting diameter
- Less than 3.5-foot installation height above soil surface
- Up to 6-foot spacing between drops

Deliverable:

The deliverable for this project will be an assessment of water savings realized from converting conventional MESA systems to high efficiency spray heads. A report will be developed that describes the analytical results of the study, costs, and recommendations for future conversions that result in water savings.